We review and establish some notation for dealing with gradients beyond just scalars. Any vector below is assumed to be a column vector by default.
Let $f$ be a real valued function and $\boldsymbol{x}$ be a vector \begin{align} f(\boldsymbol{x})&: \mathbb{R}^{n} \rightarrow \mathbb{R}\newline \frac{\partial f}{\partial \boldsymbol{x}} &= \bigg(\frac{\partial f(\boldsymbol{x})}{\partial x_{1}}, \frac{\partial f(\boldsymbol{x})}{\partial x_{2}}, \ldots, \frac{\partial f(\boldsymbol{x})}{\partial x_{n}} \bigg)^{T}\end{align}
In texts, usually $\partial f/\partial \boldsymbol{x}$ will be written as a row vector instead of a column vector (above). This is done since all vectors in this text will be column vectors, and the gradients should be the same shape as the original vectors for the update equations to work.
Let $\boldsymbol{f}$ be a vector and $y$ be a scalar \begin{align} \boldsymbol{f}(\boldsymbol{x})&: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\newline \frac{\partial \boldsymbol{f}}{\partial y} &= \begin{bmatrix} \frac{\partial f_{1}(\boldsymbol{x})}{\partial y}\newline \frac{\partial f_{2}(\boldsymbol{x})}{\partial y}\newline \vdots\newline \frac{\partial f_{m}(\boldsymbol{x})}{\partial y}\newline \end{bmatrix}\end{align}
Let $\boldsymbol{f}$ and $x$ be vectors \begin{align} \boldsymbol{f}(\boldsymbol{x})&: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\newline \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}} &= \begin{bmatrix} \frac{\partial f_{1}(\boldsymbol{x})}{\partial x_{1}}, &\cdots &\frac{\partial f_{1}(\boldsymbol{x})}{\partial x_{i}} &\cdots &\frac{\partial f_{1}(\boldsymbol{x})}{\partial x_{n}}\newline \vdots &\cdots &\vdots &\cdots &\vdots\newline \frac{\partial f_{j}(\boldsymbol{x})}{\partial x_{1}}, &\cdots &\frac{\partial f_{j}(\boldsymbol{x})}{\partial x_{i}} &\cdots &\frac{\partial f_{j}(\boldsymbol{x})}{\partial x_{n}}\newline \vdots &\cdots &\vdots &\cdots &\vdots\newline \frac{\partial f_{m}(\boldsymbol{x})}{\partial x_{1}}, &\cdots &\frac{\partial f_{m}(\boldsymbol{x})}{\partial x_{i}} &\cdots &\frac{\partial f_{m}(\boldsymbol{x})}{\partial x_{n}}\newline \end{bmatrix}\newline\end{align}