Normal Distribution

The Normal distribution (or gaussian distribution) is defined between $-\infty$ and $\infty$. It is parametrized by mean $\mu$ and variance $\sigma$, $X \sim \mathcal{N}(\mu, \sigma^{2})$ \begin{align} f_{X}(x) = \frac{1}{\sqrt{2\pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \end{align} As already described, \begin{align} E[X] &= \mu\newline Var(X) &= \sigma^{2} \end{align}

Standard Normal Distribution

A Standard Normal is defined as a normal distribution with $\mu = 0$ and $\sigma^{2} = 1$ Any normal distribution can be converted to a standard normal as $X = \frac{X - \mu}{\sigma}$ If $Y = aX + b$, then $Y \sim \mathcal{N}(a \mu + b, a^{2}\sigma^{2})$.

For a standard normal variable $Z$, it is standard to denote \begin{align} P(Z \leq z) = \Phi(z) \quad P(Z = z) = \phi(z) = \mathcal{N}(0,1) \end{align}

Further, for a given $\alpha \in (0,1)$, define $z_{\alpha}$ by \begin{align} P(Z > z_{\alpha}) = \alpha = 1-\Phi(z_{\alpha}) \end{align} Some standard values of $\alpha$ can be useful

  • $z_{0.01} = 1.2816$

  • $z_{0.05} = 1.645$

  • $z_{0.025} = 1.96$

  • $z_{0.01} = 2.33$

The 68–95–99.7 rule is also useful which states that

  • Probability of $X$ lying between 1 standard deviation on either side of mean is 68%
  • Probability of $X$ lying between 2 standard deviation on either side of mean is 95%
  • Probability of $X$ lying between 3 standard deviation on either side of mean is 99.7%

It is often easier to derive all formulae here by first considering the standard normal and defining it completely. Then any normal distribution with mean $\mu$ and variance $\sigma^{2}$ can be obtained using the transformation $Y = \sigma Z + \mu$. All calculations for mean, variance and mgf readily follow.

Moment Generating Function

\begin{align} E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \end{align} We will rearrange the terms to form a perfect square in the exponent part with a changed mean. \begin{align} E[e^{tX}] &= \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}\newline &= \int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi \sigma^{2}}}\exp \bigg( -\frac{(x-(\mu+\sigma^{2}t))^{2} - (\mu+\sigma^{2}t)^{2} + \mu^{2}}{2 \sigma^{2}} \bigg)\newline &= \int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi \sigma^{2}}} \exp \bigg(-\frac{(x-(\mu+\sigma^{2}t)^{2}}{2 \sigma^{2}} \bigg) \exp \bigg(\mu t + \frac{\sigma^{2} t^{2}}{2} \bigg)\newline E[e^{tX}] &= \exp \bigg(\mu t + \frac{\sigma^{2} t^{2}}{2}\bigg) \end{align} Since the total integral of a normal distribution is 1 (the total probability).

Sum of Normal Distributions

With the help of moment generating functions, this calculation becomes easier. Let $X_{1}, \ldots X_{n}$ be $n$ independent normal distributions with $X_{i} \sim \mathcal{N}(\mu_{i}, \sigma^{2}_{i})$. \begin{align} E[e^{t(X_{1} + X_{2} + \cdots + X_{n})}] &= \prod_{i=1}^{n} E[e^{tX_{i}}] = \prod_{i=1}^{n} e^{\mu_{i} t + \frac{\sigma_{i}^{2} t^{2}}{2}}\newline &= \exp(\sum_{i=1}^{n} \mu_{i} t+ \sum_{i=1}^{n}\sigma^{2} \frac{t^{2}}{2})\newline \implies X_{1} + X_{2} + \cdots + X_{n} &\sim \mathcal{N}(\mu_{1} + \cdots + \mu_{2}, \sigma_{1}^{2} + \cdots + \sigma_{2}^{2}) \end{align}

Multivariate Normal Distribution

Multivariate normal distribution is an extension of a normal distribution into multiple dimensions \begin{align} f_{\mathbf{X}}(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^{d} \detm{\Sigma}}} exp(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})^{T}) \end{align} for $d$ dimensional vector $\mathbf{x}$ with mean vector $\boldsymbol{\mu}$ and covriance matrix $\Sigma$.

This is easy to derive if we start from a standard normal first.

Consider $n$ independent identically distributed standard normals $Z_{i} \sim N(0, 1)$. The joint distribution is \begin{align} f_{\mathbf{Z}}(\mathbf{z}) &= \prod_{i=1}^{n}f_{Z_{i}}(z_{i}) = \roundbr{\frac{1}{\sqrt{2\pi}}}^{n}\exp\roundbr{-\frac{1}{2}\sum_{i=1}^{n}z_{i}^{2}}\newline &= \roundbr{\frac{1}{2\pi}}^{\frac{n}{2}}\exp\roundbr{-\frac{1}{2}\mathbf{z}^{T}\mathbf{z}} \end{align}

$E[\mathbf{Z}] = 0 = E[\mathbf{Z}]^{T} $ (element wise). \begin{align} Cov(\mathbf{Z}, \mathbf{Z}) &= E[\mathbf{Z}\mathbf{Z}^{T}] - E[\mathbf{Z}]E[\mathbf{Z}]^{T}\newline &= \mathbf{I}_{n}\newline \text{as} \quad E[\mathbf{Z}\mathbf{Z}^{T}]_{ij} &= Cov(Z_{i}, Z_{j}) = 0 \quad \text{independence}\newline E[\mathbf{Z}\mathbf{Z}^{T}]_{ii} &= Cov(Z_{i}, Z_{i}) = Var(Z_{i}) = 1 \quad \text{independence} \end{align}

The mgf \begin{align} M(\mathbf{t}) &= E\squarebr{e^{\mathbf{t}^{T}\mathbf{Z}}} = \exp\roundbr{\frac{1}{2}\mathbf{t}^{T}\mathbf{t}} \end{align} by independence.

Now, assume a real symmetric semippositive definite matrix $\Sigma$ that represents a variance-covariance matrix. From spectral decomposition, there exists $\Sigma^{1/2}$ such that $\Sigma^{1/2} \Sigma^{1/2} = \Sigma$ (from linear algebra). Also, this matrix is itself symmetric.

Assume a constant vector $\mathbf{\mu}$. Then, \begin{align} \mathbf{X} &= \Sigma^{1/2}\mathbf{Z} + \mathbf{\mu}\newline \implies E[\mathbf{X}] &= \Sigma^{1/2}E[\mathbf{Z}] + \mathbf{\mu} = \mathbf{\mu}\newline Cov(\mathbf{X}, \mathbf{X}) &= E[\mathbf{X}\mathbf{X}^{T}] - E[\mathbf{X}]E[\mathbf{X}]^{T}\newline &= \Sigma^{1/2}Cov(\mathbf{Z})\roundbr{\Sigma^{1/2}}^{T} = \Sigma^{1/2}\mathbf{I}_{n}\roundbr{\Sigma^{1/2}}^{T} = \Sigma\newline M(\mathbf{t}) &= E\squarebr{\exp\roundbr{\mathbf{t}^{T}\roundbr{\Sigma^{T}\mathbf{Z} + \mathbf{\mu}}}}\newline &= E\squarebr{\exp\roundbr{\mathbf{t}^{T}\Sigma^{1/2}\mathbf{Z}}}E\squarebr{\exp\roundbr{\mathbf{t}^{T}\mathbf{\mu}}} = E\squarebr{\exp\roundbr{\roundbr{\mathbf{t}^{T}\Sigma^{1/2}}\mathbf{Z}}}\exp\roundbr{\mathbf{t}^{T}\mathbf{\mu}}\newline &= \exp\roundbr{\frac{1}{2}\mathbf{t}^{T}\mathbf{\Sigma}\mathbf{t}}\exp\roundbr{\mathbf{t}^{T}\mathbf{\mu}}\newline &= \exp\roundbr{\mathbf{t}^{T}\mathbf{\mu} + \frac{1}{2}\mathbf{t}^{T}\Sigma\mathbf{t}} \end{align}

which must be familiar from the univariate case where mgf is $\exp\roundbr{\mu t + 1/2 \sigma^{2}t^{2}}$.

The distribution of $\mathbf{X}$ can be obtained using the Jacobian \begin{align} \mathbf{J} &= \frac{d\mathbf{Z}}{d\mathbf{X}} = \detm{\Sigma^{-1/2}} \newline \mathbf{Z} &= \Sigma^{-1/2}\roundbr{\mathbf{X} - \mathbf{\mu}} \end{align} where the negative sign denotes the inverse.

\begin{align} f_{\mathbf{X}}(\mathbf{x}) &= \roundbr{\frac{1}{2\pi}}^{\frac{n}{2}}\exp\roundbr{-\frac{1}{2}\roundbr(\mathbf{X} - \mathbf{\mu})^{T}\roundbr{\Sigma^{-1/2}}^{T}\Sigma^{1/2}\roundbr{\mathbf{X} - \mathbf{\mu}}} \detm{\Sigma^{-1/2}}\newline &= \roundbr{\frac{1}{2\pi}}^{\frac{n}{2}}\frac{1}{\detm{\Sigma^{1/2}}}\exp\roundbr{-\frac{1}{2}\roundbr{\mathbf{X} - \mathbf{\mu}}^{T}\Sigma\roundbr{\mathbf{X} - \mathbf{\mu}}} \end{align}