Consider $X_{1}, X_{2}, \ldots, X_{n}$ be independently derived from a normal population with mean $\mu$ and variance $\sigma^{2}$
i.e., $X_{i} \sim \mathcal{N}(\mu, \sigma^{2}) \forall i = 1, 2, \ldots, n$
Based on the derivations above, \begin{align} E[\overline{X}] &= \mu\newline Var(\overline{X}) &= \frac{\sigma^{2}}{n} \end{align}
And since the sum of normal random variables is also normal, \begin{align} \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1) \end{align} which is similar to the central limit theorem.
From the derivation above for the sample variance, \begin{align} E[S^{2}] = \sigma^{2} \end{align}
Now let’s calcluate the distribution of $S^{2}$ \begin{align} S^{2} &= \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}\newline (n-1)S^{2} &= \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}\newline &= \sum_{i=1}^{n} ((X_{i} - \mu) - (\overline{X} - \mu))^{2}\newline &= \sum_{i=1}^{n} ((X_{i} - \mu)^{2} + (\overline{X} - \mu)^{2} - 2(X_{i} - \mu)(\overline{X} - \mu))\newline &= \sum_{i=1}^{n} (X_{i} - \mu)^{2} + n(\overline{X} - \mu)^{2} - 2(\overline{X} - \mu)\sum_{i=1}^{n}(X_{i} - \mu)\newline &= \sum_{i=1}^{n} (X_{i} - \mu)^{2} + n(\overline{X} - \mu)^{2} - 2n(\overline{X} - \mu)^{2}\newline &= \sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\overline{X} - \mu)^{2}\newline \frac{(n-1)S^{2}}{\sigma^{2}} &= \sum_{i=1}^{n} (\frac{X_{i} - \mu}{\sigma})^{2} - (\frac{\overline{X} - \mu}{\sigma/\sqrt{n}})^{2} \quad\text{to make standard normals}\newline \text{or,}\quad \frac{(n-1)S^{2}}{\sigma^{2}} + (\frac{\overline{X} - \mu}{\sigma/\sqrt{n}})^{2} &= \sum_{i=1}^{n} (\frac{X_{i} - \mu}{\sigma})^{2} \end{align}
The right hand side is a chi-square variable with $n$ degrees of freedom and the second part of the left hand side is a chi-square variable with $1$ degree of freedom. We know that sum of independent chi-square variables is also a chi-square variable with degrees of freedom equal to the sum of individual degrees of freedom. Hence, it follows that \begin{align} \frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} \end{align} and also the fact that for a normal population, the sample mean and sample variance are independent variables with normal and chi-square distributions respectively. This independence is a unique property for a normal distribution and is useful in parameter estimation and hypothesis testing.
Another interesting observation from the above derivations is \begin{align} \sqrt{n}\frac{\overline{X} - \mu}{S} &\sim t_{n-1}\newline \text{whereas}\quad \sqrt{n}\frac{\overline{X} - \mu}{\sigma} &\sim \mathcal{N}(0,1) \end{align} Note that the denominator is in the first equation is sample variance. The derivation is \begin{align} \frac{Z}{\sqrt{\chi_{n}^{2}/n}} &\sim t_{n} \quad\text{definition}\newline \text{or,}\quad \frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^{2}}{\sigma^{2}} \frac{1}{n-1}}} &\sim t_{n-1}\newline \text{or,}\quad \sqrt{n}\frac{\overline{X} - \mu}{S} &\sim t_{n-1} \end{align}